五个囚犯先后从100颗绿豆中抓绿豆。抓得最多和最少的人将被处死,不能交流,可以摸出剩下绿豆的数量,谁的存活几率最大?
提示:
- 1、他们都是很聪明的人;
- 2、他们的原则是先求保命,再去多杀人;
- 3、100颗不必都分完,但要保证每人至少抓一颗;
- 4、若有重复的情况,则也算最大和最小,一并处死。
题目分析
(1)分别按1-5号在装有100颗绿豆的麻袋抓绿豆
每个囚犯被编号为1,2,3,4,5,按照顺序依次从麻袋里面抓绿豆,也就是依次只有一个人在麻袋中抓绿豆。否则,他们就有可能交流,甚至可能出现无法摸出剩下豆子数的可能。
(2)每人至少抓一颗
直接说明就是,5个人从95颗豆子中随意选择。(此处写95是为了后面的逻辑推理)
(3)他们都是聪明人
说白了就是知道怎么才能使自己活下来的可能性最大,只要有希望就会去争取(马云说过,希望还是要有的,万一实现了)。
(4)他们的原则是先求保命,再去多杀人
也就是只要能在活下来的前提下,能杀死几个就杀死几个(哈哈,穷凶极恶啊)
(5)提示中的“若有重复的情况,则也算最大或最小,一并处死”
结合题目,处死条件为:抓取豆子数最多者、最少者、重复者
(6)问他们中谁的存活几率最大?
从这个问题剖析,可以了解到:没有绝对的生还者,每个人的生死都相互关联,是个概率问题
分析
第一个人选择17时最优的。它有先动优势。他确实有可能被逼死,后面的2、3、4号也想把1号逼死,但做不到(起码确定性逼死做不到)
可以看一下,如果第1个人选择21,他的信息时暴露给第2个人的,那么,1号就将自己暴露在一个非常不利的环境下,2-4号就会选择20,五号就会被迫在1-19中选择,则1、5号处死。所以1号不会这样做,会选择一个更小的数。
1号选择一个<20的数后,2号没有动力选择一个偏离很大的数(因为这个游戏偏离大会死),只会选择+1或-1,取决于那个死的概率小一些,再考虑这些的时候,又必须逆向考虑,1号必须考虑2-4号的选择,2号必须考虑3、4号的选择,... ...只有5号没得选择,因为前面是只有连着的两个数(且表示为N,N+1),所以5号必死,他也非常明白这一点,会随机选择一个数,来决定整个游戏的命运,但决定不了他自己的命运。
下面决定的就是1号会选择一个什么数,他仍然不会选择一个太大或太小的数,因为那样仍然是自己处于不利的地位(2-4号肯定不会留情面的),100/6=16.7(为什么除以6?因为5号会随机选择一个数,对1号来说要尽可能的靠近中央,2-4好也是如此,而且正因为2-4号如此,1号才如此... ...),最终必然是在16、17种选择的问题。
对16、17进行概率的计算之后,就得出了3个人选择17,第四个人选择16时,为均衡的状态,第4号虽然选择16不及前三个人选择17生存的机会大,但是若选择17则整个游戏的人必死(包括他自己)!第3号没有动力选择16,因为计算概率可知生存机会不如17。
所以选择为17、17、17、16、X(1-33随机),1-3号生存机会最大。